完善精煉裝置中的精煉工藝,,采用保證鋼軌中氧含量降低的脫氧新制度,,依據(jù)氧含量確定鋼中非金屬夾雜的特性和數(shù)量,。當(dāng)氧含量降低到25ppm時,基本以脆性斷裂氧化夾雜為主;而當(dāng)氧含量大于40ppm時,,則以塑性硅酸鹽為主要形態(tài),。
目前,俄羅斯冶金行業(yè)具有足夠強大的技術(shù)裝備,,能夠有效地改進(jìn)鋼軌的冶金質(zhì)量,。由于實施一系列措施,包括研究熔煉工藝,、采用綜合脫氧方法,、利用鋼軌變形處理以及精煉和真空處理裝置,有可能將鋼軌中的氧含量降至20ppm,,并同時降低非金屬夾雜的夾雜度,。
新庫茲涅茨克鋼鐵公司利用電爐生產(chǎn)鐵路用鋼軌。一臺型號為ДСП--100H10(凸窗出鋼,、95MVA變壓器,、BSE公司的供氧系統(tǒng));另一臺型號為ДСП—100И7(虹吸出鋼、80MVA變壓器,、彎形門式氧氣風(fēng)嘴),。這兩臺電爐利用25%~40%液態(tài)鐵水進(jìn)行熔煉,在上爐留下的15~30t爐渣和金屬內(nèi),,加入金屬廢鋼裝料,。為了加快爐中金屬料和碳氧化物的熔煉過程,利用有效的氧氣噴嘴,,BSE公司的噴嘴或者門式氧氣風(fēng)嘴Fuchs和彎形風(fēng)嘴,。鼓入氧氣的一般消耗量達(dá)到1萬m3/h。
鐵水在裝入廢金屬前直接注入,,當(dāng)達(dá)到目標(biāo)溫度,,且碳含量大于0.7%時,在電爐啟動的情況下,,將非脫氧金屬排放到無渣罐,。在往罐中排放的過程中添加造渣劑。造渣劑由石灰和螢石,,以及通過計算錳在成品鋼中最低含量的硅錳合金組成,。在排放的過程中,通過底部多孔風(fēng)嘴對罐中的鋼水吹入氮氣,,壓力為0.7Mpa,,消耗量為20m3/h。排完以后,進(jìn)入精煉裝置,,繼續(xù)對鋼水進(jìn)行處理,,以達(dá)到要求的化學(xué)成分及澆注溫度。
為降低鋼水中碳含量,,在精煉裝置中開發(fā)了精煉新工藝。當(dāng)帶有金屬的罐進(jìn)入精煉爐后,,通過底部多孔風(fēng)嘴以20m3/h的消耗量進(jìn)行提前3min吹氬,,進(jìn)行溫度測量、提取金屬和鋼渣試樣,,繼續(xù)利用夾送器按125g/t Ca的計算量添加硅鈣合金絲,。通過添加ФС75渣、0.4~0.7kg/t焦炭粉和石灰,,造Fe0含量小于0.5%和堿度2.5~3.0的液態(tài)渣,。
當(dāng)?shù)玫焦拗薪饘僭嚇拥幕瘜W(xué)分析結(jié)果后,再加入鐵合金及其他合金,。第二次按125g/t Ca加入硅鈣合金絲,,進(jìn)行最終脫氧,但不早于精煉結(jié)束前5min,。利用Heraeus Electr0-Nite公司的Hydris儀器,,在完成階段確定溫度和氧含量。經(jīng)過爐外精煉,,鋼水在尺寸為300mm×300mm的結(jié)晶器,,四流連鑄機上進(jìn)行澆鑄。
由于在精煉裝置中完善精煉工藝,,并采用脫氧新制度,,新庫茲涅茨克鋼鐵公司鋼軌鋼中平均氧含量達(dá)到27.8ppm。這種情況下,,氧化夾雜脆性鏈的平均長度為0.18mm,。
為了確立依氧含量變化的鋼軌中非金屬夾雜數(shù)量和特性關(guān)系,進(jìn)行了不同氧含量鋼的金相研究,。在成品軌氧含量小于25ppm時,,夾雜物基本上是鈣鋁酸鹽脆性斷裂線條(Ca0.Al203)。
在這種氧含量下,,最大夾雜長度不超過10μm,,鋼的鈣鋁酸鹽夾雜度水平評價平均不超過ГОСТ1778—70渣1級。盡管在脫氧工藝中去除了含鋁材料,,在非金屬夾雜線條中仍存在Al203,。顯然,鐵合金和罐中渣是鋁產(chǎn)生的源頭。
隨著氧含量升高到40ppm時,,非金屬夾雜的特性和數(shù)量明顯地發(fā)生了變化,。脆性斷裂氧化夾雜數(shù)量減少,而產(chǎn)生應(yīng)變的硅酸鹽的比例增加,。在硅酸鹽夾雜的里還存在鋁和鈣,,在顯微切片上看到的硅酸鹽夾雜,其形式是長度為0.12~0.30mm黑灰色細(xì)的均勻分布線條,。
在更高的氧含量下,,非金屬夾雜基本上是長度為0.25~0.53mm的單一硅酸鹽。這些夾雜物的鋼夾雜度平均與ГОСТ1778—70渣2級相符,。
由于與脆性斷裂氧化夾雜相比,,微小塑性硅酸鹽對投入運行的鋼軌壽命影響很小。含有塑性硅酸鹽外殼的鋁氧化物是比較安全的夾雜種類,。
除此而外,,還可以確定不依氧含量為轉(zhuǎn)移,與內(nèi)源夾雜一樣,,在鋼軌中遇見的還有少數(shù)長度達(dá)1.5mm外源特性的夾雜,。一般來說,這樣的夾雜具有多相組成,,且基本上是進(jìn)入結(jié)晶器中的渣滴和耐火材料或造渣劑的微粒,。
依據(jù)組成不同而變化的多相渣夾雜在軋制中表現(xiàn)出不一樣的變形。一些氧化物夾雜,,形成帶有尖的或縱向裂開端的粗糙線條,,其組成元素的順序為[Mn]>[Si]>[Al]>[Ca]>[S],在軋制時會產(chǎn)生塑性變形,。而另一些夾雜,,氧化物為波浪形線條,其組成的元素順序為[Ca]>[Si]>[Mn]>[Al]>[Ti]>[Mg]>[K]>[S],,該夾雜在軋制時不會產(chǎn)生變形,。
通常情況下,外源氧化夾雜具有偶然性,,在鋼軌鋼中極少遇到,。
研究表明,鋼中氧含量的降低,,會使應(yīng)變硅酸鹽夾雜數(shù)量的明顯減少,,而脆性斷裂復(fù)雜氧化物比例增加。因此,,這是一個不良的傾向,。
俄羅斯鐵路運輸科研所開展的批量試驗結(jié)果表明,,具有硅酸鹽高份額的К23批次鋼軌與Т17-22批次鋼軌相比,其使用壽命要長,。而Т17-22鋼軌是利用真空煉鋼,,硅酸鹽含量較低,而鈣鋁酸鹽含量較高,。該結(jié)果證明,,鋼軌使用壽命不僅取決于鋼中的氧含量,而且也取決于非金屬夾雜的類型,。
為了保證鋼軌更優(yōu)良的使用特性,,理論上最好使非金屬夾雜的夾雜度最小。但與此同時,,在鋼中氧含量降低的同時,如何保證非金屬夾雜確定形式和組成的問題也逐漸顯現(xiàn)出來,。